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The Hyperbolic Heat Conduction Equation in an
Anisotropic Material

M. A. Al-Nimr1, 2 and M. Naji1

In this work, the phase-lag concept in the wave theory of heat conduction is
extended to describe the thermal behavior of an anisotropic material. This is
achieved by assuming that there are phase lags of different magnitudes between
each component of the heat flux vector and the summation of temperature
gradients in all directions of the orthogonal coordinate system. Also, expressions
are provided to specify the locations of the principal coordinate axes, the prin-
cipal thermal conductivities, and the principal thermal relaxation times.
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1. INTRODUCTION

Hyperbolic heat transport has been receiving increasing attention both for
theoretical motivations (analysis of thermal waves and second sound in
dielectric solids, finite speed of heat transport, etc.) and for the analysis of
some practical problems involving a fast supply of thermal energy (for
instance, by a laser pulse or a chemical explosion, etc.). The usual theory
of thermal conduction, based on the Fourier law, implies an immediate
response to a temperature gradient and leads to a parabolic differential
equation for the evolution of the temperature. In contrast, when relaxa-
tional effects are taken into account in the constitutive equation describing
the heat flux, as, for instance, in the Maxwell�Cattaneo equation, one has
a hyperbolic equation which implies a finite speed for heat transport. The
literature in this field is rather vast. We refer the reader to several reviews
and papers on this subject [1�3].
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To account for the phenomena involving the finite propagation
velocity of the thermal wave, the classical Fourier heat flux should be
modified. Cattaneo [4] and Vermotte [5] suggested independently a
modified heat flux model in the form of

q(x, t+{)=&k
�T (x, t)

�x
(1)

where q is the heat flux vector, k is the thermal conductivity, and { is the
relaxation time. The constitutive Eq. (1) assumes that the heat flux vector
(the effect) and the temperature gradient (the cause) across a material
volume occur at different instants of time, and the time delay between the
heat flux and the temperature gradient is the relaxation time {. The first-
order expansion of q in Eq. (1) with respect to t connects all the physical
quantities at the same time. It results in the expansion

{
�q(x, t)

�t
+q(x, t)=&k

�T (x, t)
�x

(2)

In Eq. (2) it is assumed that { is small enough so that the first-order Taylor
expansion of q(x, t+{) is an accurate representation for the convection
heat flux. The equation of energy conservation for such problems is given
as

\c
�T
�t

=&
�q
�x

(3)

where \ is the density and c is the specific heat. Elimination of q between
Eq. (2) and Eq. (3) leads to the hyperbolic heat conduction equation

\c{
�2T
�t2 +\c

�T
�t

=k
�2T
�x2 (4)

Various analytical and numerical methods (Vick and Ozisik [6]; Yuen and
Lee [7]; Kim et al. [8]; Chen and Lin [9]; Ozisik and Tzou [3];
Kozlowska et al. [10]; Tang and Araki [11]) have been proposed to solve
the hyperbolic heat conduction problems under different applications and
in different configurations.

However, the hyperbolic heat conduction model, in the present form,
cannot be used to describe the thermal behavior of anisotropic solids in
which the thermal conductivity varies with direction. Heat conduction in
anisotropic materials has numerous important applications in various
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branches of science and engineering. For example, crystals, wood, sedimen-
tary rocks, metals that have undergone heavy cold pressing, laminated
sheets, cables, heat shielding materials for space vehicles, fiber-reinforced
composite structures, and many others are anisotropic materials.

The aim of the present work is to extend the phase-lag concept in the
wave theory of heat conduction to describe the thermal behavior of
anisotropic materials. It is assumed that a phase lag exists between each of
the conduction fluxes, in a given direction, as for the temperature gradients
in all spatial directions.

2. ANALYSIS

The energy equation that describes the thermal behavior of
anisotropic, and isotropic, materials is given as

&
�q1

�x1

&
�q2

�x2

&
�q3

�x3

+ g=\c
�T
�t

(5)

The components of the heat flux vector, in the case of anisotropic solids,
depend, in general, on a linear combination of the temperature gradients
along the three perpendicular directions:

&q1(t+{1)=k11

�T (t)
�x1

+k12

�T (t)
�x2

+k13

�T (t)
�x3

&q2(t+{2)=k21

�T (t)
�x1

+k22

�T (t)
�x2

+k23

�T (t)
�x3

(6)

&q3(t+{3)=k31

�T (t)
�x1

+k32

�T (t)
�x2

+k33

�T (t)
�x3

where in Eqs. (6) it is assumed that the heat flux vector (the effect) and the
temperature gradient (the cause) across a material volume occur at dif-
ferent instants of time and the time delays between each heat flux in a given
direction and the combinations of temperature gradients in all directions
are the relaxation times {1 , {2 , and {3 . It is reasonable here to assume that
different heat fluxes have different thermal relaxation times since the mate-
rial is anisotropic. The first-order expansions of q1 , q2 , and q3 in Eqs. (6)
with respect to t connects all the physical quantities at the same time. It
results in the expansion
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&q1(t)&{1

�q1(t)
�t

=k11

�T (t)
�x1

+k12

�T (t)
�x2

+k13

�T (t)
�x3

&q2(t)&{2

�q2(t)
�t

=k21

�T (t)
�x1

+k22

�T (t)
�x2

+k23

�T (t)
�x3

(7)

&q3(t)&{3

�q3(t)
�t

=k31

�T (t)
�x1

+k32

�T (t)
�x2

+k33

�T (t)
�x3

Now Eqs. (5) and (7) describe the thermal behavior of an anisotropic
material when the speed of heat transport is finite.

Usually, it is better to express the energy equation, Eq. (5), in terms
of temperature only and this may be achieved by eliminating the com-
ponents of the heat flux vector q between Eq. (5) and Eq. (7). Now derive
Eqs. (7) with respect to x1 , x2 , and x3 , respectively, and combine the
results to yield

&
�q1

�x1

&
�q2

�x2

&
�q3

�x3

&
�
�t _{1

�q1

�x1

+{2

�q2

�x2

+{3

�q3

�x3&
=k11

�2T (t)
�x2

1

+k12

�2T (t)
�x1 �x2

+k13

�2T (t)
�x1 �x3

+k21

�2T (t)
�x1 �x2

+k22

�2T (t)
�x2

2

+k23

�2T (t)
�x2 �x3

+k31

�2T (t)
�x1 �x3

+k32

�2T (t)
�x2 �x3

+k33

�2T (t)
�x2

3

(8)

The only possible way to eliminate the gradient of the heat flux vector from
Eq. (8) is to assume that {1={2={3={ and then substitute for the
gradient of the heat vector from Eq. (5), to yield

\c
�T
�t

+\c{
�2T
�t2 & g&{

�g
�t

=k11

�2T (t)
�x2

1

+k12

�2T (t)
�x1 �x2

+k13

�2T (t)
�x1�x3

+k21

�2T (t)
�x1 �x2

+k22

�2T (t)
�x2

2

+k23

�2T (t)
�x2�x3

+k31

�2T (t)
�x1 �x3

+k32

�2T (t)
�x2 �x3

+k33

�2T (t)
�x2

3

(9)
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In situations in which the assumption that {1={2={3 is not valid, another
approach will be followed. In this approach, the phase lag between the
components of the heat flux vector and the temperature gradients in dif-
ferent directions, is expressed as

&q1(t)=k11

�T (t+{11)
�x1

+k12

�T (t+{12)
�x2

+k13

�T (t+{13)
�x3

&q2(t)=k21

�T (t+{21)
�x1

+k22

�T (t+{22)
�x2

+k23

�T (t+{23)
�x3

(10)

&q3(t)=k31

�T (t+{31)
�x1

+k32

�T (t+{32)
�x2

+k33

�T (t+{33)
�x3

Equations (10) are special cases of the dual-phase-lag model, which allows
either the temperature gradient (cause) to precede the heat flux vector
(effect) or the heat flux vector (cause) to precede the temperature gradient
(effect) in the transient process. In Eqs. (10), if the {'s are negative, this
implies that the temperature gradients (cause) precede the heat fluxes
(effect), and if the {'s are positive, this implies that the heat flux vector
(cause) precedes the temperature gradient (effect). The first-order expan-
sion of temperature gradients with respect to {'s in Eq. (10) connects all the
physical quantities at the same instant of time. It results in the expressions

&q1=k11

�T
�x1

+k11 {11

�2T
�x1 �t

+k12

�T
�x2

+k12{12

�2T
�x2 �t

+k13

�T
�x3

+k13{13

�2T
�x3 �t

&q2=k21

�T
�x1

+k21 {21

�2T
�x1 �t

+k22

�T
�x2

+k22{22

�2T
�x2 �t

+k23

�T
�x3

+k23{23

�2T
�x3 �t

&q3=k31

�T
�x1

+k31 {31

�2T
�x1 �t

+k32

�T
�x2

+k32{32

�2T
�x2 �t

+k33

�T
�x3

+k33{33

�2T
�x3 �t

(11)

Now derive Eqs. (11) with respect to x1 , x2 , and x3 , respectively, and sub-
stitute for �q1 ��x1 , �q2 ��x2 , and �q3 ��x3 into the energy equation to yield
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\c
�T
�t

=k11

�2T
�x2

1

+2k12

�2T
�x1 �x2

+2k13

�2T
�x1 �x3

+k22

�2T
�x2

2

+2k23

�2T
�x2 �x3

+k33

�2T
�x2

3

+k11 {11

�3T
�t �x2

1

+2k12 {12

�3T
�t �x1 �x2

+2k13{13

�3T
�t �x1 �x3

+k22 {22

�3T
�t �x2

2

+2k23 {23

�3T
�t �x2 �x3

+k33{33

�3T
�t �x2

3

+ g (12)

Equation (12) may be rewritten in terms of the principal coordinate axes
`1 , `2 , and `3 as

\1+
�
�t+

�2T
�`2

1

+\1+
�
�t+

�2T
�`2

2

+\1+
�
�t+

�2T
�`2

3

+ g=\c
�T
�t

(13)

The principal axes `1 , `2 , and `3 are determined in the following manner:
if l1 , l2 , and l3 are the directional cosines of the principal axis o`1 with
respect to the axes ox1 , ox2 , and ox3 , and *1=k1(1+{1) is the principal
value along the direction o`1 , then l1 , l2 , and l3 satisfy the relation

k11(1+{11)&*1 k12(1+{12) k13(1+{13) l1

\ k21(1+{21) k22(1+{22)&*1 k23(1+{23) +_l2&=0 (14)

k31(1+{31) k32(1+{32) k33(1+{33)&*1 l3

which provides three homogeneous equations for the three unknowns l1 , l2 ,
and l3 . Only two of these equations are linearly independent. An additional
relation is obtained from the requirement that the directional cosines satisfy

l 2
1+l 2

2+l 2
3=1

Thus, the three directional cosines of the principal axis o`1 are determined
from the determinantal equation resulting from the matrix Eq. (14). The
procedure is repeated with *2=k2(1+{2) for the determination of the prin-
cipal axis o`2 and with *3=k3(1+{3) for the principal axis o`3 .

The principal values *1=k1(1+{1), *2=k2(1+{2), and *3=k3(1+{3)
are determined as three roots of the following equation:

k11(1+{11)&* k12(1+{12) k13(1+{13)

} k21(1+{21) k22(1+{22)&* k23(1+{23) }=0 (15)

k31(1+{31) k32(1+{32) k33(1+{33)&*
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3. CONCLUSION

The hyperbolic heat conduction model was extended to describe the
thermal behavior of an anisotropic material. By assuming different phase
lags between each component of the heat flux vector and the summation of
temperature gradients in all directions of the orthogonal coordinate system,
the relaxational effects in different directions were taken into account.

NOMENCLATURE

c Specific heat capacity
g Heating source
k Thermal conductivity
kij Conductivity coefficient
ki Principal conductivity
li Direction cosine of the principal axis o`i

qi Component of the conduction heat flux vector
t Time
T Temperature
xi Spatial coordinate

Greek Letters

*i Principal combination, ki (1+{i)
\ Density
{ Thermal relaxation time
{ij Components of thermal relaxation time
`i Axes of the principal coordinate system
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